Partitions

C04
Partitions

This section contains a full range of lightweight partition and wall systems for use in new and existing buildings. They cover all applications, from simple space division to high performance walls.
Partitions

Gyproc offers a full range of lightweight partition and wall systems. Our systems are non-loadbearing and constructed using modern, drylining techniques. Gyproc metal framed partitions and walls can be used in all types of new and existing buildings, including private and social housing, apartments, healthcare, educational facilities, recreational and industrial properties.

They cover all applications, from simple space division, through to high performance walls designed to meet the most demanding fire resistance, sound insulation, impact and height requirements.

Gyproc partition systems are constructed using lightweight materials, which can give rise to significant savings in structural design compared to masonry alternatives. Big benefits also include the speed of installation and reduction to overall build costs.

Buildings need to evolve throughout their life to suit changing demands placed upon them. Our lightweight partition systems are easy to reconfigure with minimal impact to both building and occupants resulting in less disruption, optimising the transformation process.

You may also be interested in...

For unique performance situations with specialist requirements:
— Curved partitions
— High levels of fire resistance
— Access to build from one side only
— High security including bomb blast

► Refer to C05. S01. P289 – Specialist partitions
Partitions

When specifying partitions, a number of performance characteristics are normally used to determine the required solution. Depending on the project or construction type, these performance parameters could be set by minimum regulatory standards, or a client or customer requirement for buildings that offer the highest standards of performance and comfort.

Our quick-reference partition system guide, below, allows you to simply select the performance categories of interest and identify the Gyproc partitions systems that best satisfy your project requirements.

<table>
<thead>
<tr>
<th>Fire performance mins</th>
<th>Partition thickness mm</th>
<th>Acoustic performance</th>
<th>Duty rating</th>
<th>Maximum height mm</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 - 120</td>
<td>75 - 211</td>
<td>34 - 63</td>
<td>47 - 57</td>
<td>Medium - Severe</td>
<td>8100 GypWall</td>
</tr>
<tr>
<td>60 - 120</td>
<td>102 - 132</td>
<td>42 - 58</td>
<td>-</td>
<td>Severe</td>
<td>4900 GypWall ROBUST</td>
</tr>
<tr>
<td>30 - 60</td>
<td>97 - 203</td>
<td>44 - 62</td>
<td>-</td>
<td>Severe</td>
<td>7800 GypWall EXTREME (including EXTREME / ROBUST Hybrid)</td>
</tr>
<tr>
<td>60 - 120</td>
<td>137 - 238</td>
<td>61 - 65</td>
<td>53 - 59</td>
<td>Severe</td>
<td>6800 GypWall QUIET SF</td>
</tr>
<tr>
<td>30 - 90</td>
<td>102 - 208</td>
<td>49 - 63</td>
<td>48 - 55</td>
<td>Heavy - Severe</td>
<td>5700 GypWall STAGGERED</td>
</tr>
<tr>
<td>60 - 120</td>
<td>200 - 300</td>
<td>60 - 64</td>
<td>47 - 58</td>
<td>Severe</td>
<td>7500 GypWall QUIET</td>
</tr>
<tr>
<td>60 - 120</td>
<td>≥200</td>
<td>66 - 70</td>
<td>58 - 62</td>
<td>Severe</td>
<td>3900 GypWall QUIET IWL</td>
</tr>
<tr>
<td>60 - 120</td>
<td>300 - 800</td>
<td>67 - 80</td>
<td>56 - 71</td>
<td>Severe</td>
<td>11500 GypWall AUDIO</td>
</tr>
<tr>
<td>30 - 120</td>
<td>88 - 196</td>
<td>34 - 52</td>
<td>-</td>
<td>-</td>
<td>- Non-loadbearing timber stud (internal partitions)</td>
</tr>
<tr>
<td>60 - 90</td>
<td>141 - 293</td>
<td>56 - 63</td>
<td>48 - 53</td>
<td>-</td>
<td>- Non-loadbearing timber stud (separating walls)</td>
</tr>
</tbody>
</table>

1 Based on studs at 600mm centres

Additional information

Try out our System Selector, an online tool designed to help find the ideal solutions for your project needs. Additional information such as BIM data (e.g. Revit) and other associated items can be downloaded. Visit gyproc.ie
GypWall performance

Acoustic performance

Table 1 — Sound insulation performance for residential specification

<table>
<thead>
<tr>
<th>Technical Guidance Document E (Republic of Ireland)</th>
<th>On-site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separating walls between new homes</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Booklet G (Northern Ireland)</th>
<th>On-site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separating walls between new dwellings</td>
<td>45 (43*)</td>
</tr>
<tr>
<td>Dwellings formed by a material change of use</td>
<td>43</td>
</tr>
<tr>
<td>Walls</td>
<td></td>
</tr>
<tr>
<td>Floors & Stairs</td>
<td></td>
</tr>
</tbody>
</table>

*Hotel rooms, hostels, boarding houses or hall of residence

Good practice specification guidance

Gyproc’s systems are designed and tested to meet every performance requirement and are fully supported by our SpecSure® lifetime system warranty.

This means that when our systems are installed following our guidance they will achieve every performance claim we make, and if they don’t then we’ll put it right.

To maximise the performance achieved on site, consider the following good practice specification guidance:

— Consider flanking transmission at the design stage and ensure construction detailing is specified to eliminate, or at least to minimise, any downgrading of the acoustic performance

— Small openings such as gaps, cracks or holes will conduct airborne sounds and can significantly reduce the sound insulation of a construction. For optimum sound insulation a construction must be airtight

— When designing the layout of rooms requiring separation by sound insulating walls abutting structural steelwork, consideration should be given to the potential loss of sound insulation performance through the steelwork

— Deflection heads, by definition, must be able to move and, therefore, achieving an airtight seal is very difficult without incorporating sophisticated components and techniques. Air leakage at the partition heads will have a detrimental effect on acoustic performance of any partition. Where acoustic performance is a key consideration, steps must be taken to minimise this loss of performance

— A common mistake made when designing a building is to specify a high performance element and then incorporate a lower performing element within it: although sometimes unavoidable, for example, a door within a partition. Where the difference between insulation is relatively small (7dB or less), there needs to be a comparatively large area of the lower insulation element before the overall sound insulation is significantly affected. However, where there is a greater difference in sound insulation performance between the two elements, this would usually result in a greater reduction of overall sound insulation performance.
Standard GypWall construction details

To be read in conjunction with system specific details. Refer to relevant system sections.

1. Gypframe 'T' Stud
2. Gypframe ‘C’ Stud
3. Gypframe AcouStud
4. Gypframe Floor & Ceiling Channel
5. Gyproc Wafer Head Drywall Screws or Gyproc Wafer Head Jack-Point Screws
6. Crimp

Stud splicing detail
Fire protection

Plasterboard linings provide good fire protection owing to the unique behaviour of the non-combustible gypsum core when subjected to high temperatures.

Fire resistance

Elements of structure such as compartment walls which are required by national Building Regulations to be constructed of non-combustible materials or ‘materials of limited combustibility’, should be installed without timber sole plates. All Gyproc metal stud partitions and walls are tested for fire resistance without timber sole plates. However, if a timber sole plate is included, the plasterboard linings should be fixed to protect the sole plate on either side.

Three high performance fire resistant boards are available from Gyproc – Gyproc FireLine, Gyproc DuraLine and Gyproc MultiBoard.

Gyproc FireLine is a cost-effective fire resistant board suitable for use over a wide range of specifications.

Gyproc DuraLine combines high levels of fire performance with high impact resistance. Gyproc MultiBoard is a general purpose building board offering high levels of fire performance, impact and moisture resistance. Its flexibility makes it ideal as a lining for curved partitions, walls and ceilings.

Fire-stopping

Gaps around the perimeter of elements and inadequate sealing at junctions and around service penetrations can result in building elements failing to meet their specified levels of fire protection. The services themselves can also act as a mechanism of fire spread. By designing zones through which all services pass, the number of individual service penetrations can be minimised. Since most services are installed by specialist contractors, it is important that adequate liaison is maintained with the drylining contractor to ensure their proper location and firestopping. The necessity to independently support services will depend on their size and weight. Contact the Gyproc Technical Department for guidance.
Sound insulation

To achieve optimum sound insulation it is important that the partition is made airtight. At the base of the partition gaps will occur particularly when boards are lifted tight to the ceiling. Small gaps or airpaths can be sealed using Gyproc Sealant. Most remaining gaps can be sealed at the jointing stage using Gyproc jointing materials. It is recommended that gaps in excess of 6mm are bulk filled using a Gyproc Jointing material after application of Gyproc Sealant (see Figs 3 and 3a).

The standard of sound insulation achieved on site may be influenced by flanking transmission and direct transmission via doors, glazing, services, etc. Therefore, care should be taken to ensure that the associated structure is suitable to achieve the level of sound insulation required.

Where high levels of sound insulation are important, Gyproc SoundBloc offers significantly enhanced performance compared to the same thickness of Gyproc WallBoard.
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections.

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Gypframe Floor & Ceiling Channel
4. Gyproc Sealant
5. Bulk fill Gyproc jointing materials (where gap exceeds 5mm)
6. Skirting
7. Floating screed on resilient layer
8. Timber sole plate suitably fixed to structure
9. Internal blockwork
10. Driliner wall lining system
11. Isover insulation
Standard GypWall construction details (continued)
To be read in conjunction with system specific details. Refer to relevant system sections

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypsum 'C' Stud
3. Isover insulation
4. Gypsum GAS Internal Fixing Angle
5. Gypsum GA6 Splayed Angle

'Y' junction to optimise acoustic performance and reduce flanking transmission

'T' junction to optimise acoustic performance and reduce flanking transmission

Four way junction to optimise acoustic performance and reduce flanking transmission

Splayed corner
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections.

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Stone mineral wool (minimum density 23kg/m³) (by others)
4. Gyproc Control Joint
5. Gypframe 99 FC 50 Fixing Channel
6. 18mm plywood
7. Gypframe Service Support Plate

NB Installing the screw into the side of the Gypframe Service Support Plate and the web of the Gypframe ‘C’ Stud will avoid creating excessive distortion to the lining board.
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections.

Deflection heads for 15mm downward movement and 60 minutes fire resistance

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Gypframe GFS1 Fixing Strap
4. Gypframe Deep Flange Floor & Ceiling Channel
5. Gypframe Extra Deep Flange Floor & Ceiling Channel
6. Gyproc CoreBoard
7. Gyproc FireStrip (continuous)
8. Timber head plate suitably fixed to structure
9. 25mm Glasroc F Firecase
10. Stone mineral wool (by others)
11. Nogging cut from Gypframe ‘C’ Stud

Deflection head for plus or minus 25mm movement and 60 minutes fire resistance

12. Deflection head for plus or minus 25mm movement and 60 minutes fire resistance
13. Deflection head for 15mm downward movement and up to 120 minutes fire resistance
14. Deflection head for 50mm downward movement and 60 minutes fire resistance
15. Deflection head for plus or minus 25mm movement and 60 minutes fire resistance
16. Deflection head for 15mm downward movement and 60 minutes fire resistance
17. Deflection head for 50mm downward movement and 60 minutes fire resistance
18. Deflection head for plus or minus 25mm movement and 60 minutes fire resistance
19. Deflection head for 15mm downward movement and 60 minutes fire resistance
20. Deflection head for 50mm downward movement and 60 minutes fire resistance

Notes: No fixings should be made through the boards into the flanges of the head channel. The arrow (→) denotes the position of the uppermost board fixing, which should be made into Gypframe GFS1 Fixing Strap (or stud nogging in construction detail 16). Continuous Gyproc FireStrip must be installed as shown to maintain fire performance. Where there is a need for a deflection head in a 90 minute wall, the 120 minute solution can be used (refer to construction detail 16) or alternatively, please contact the Gyproc Technical Department for further guidance.
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections

1. Gyproc plasterboard or Glasroc F specialist board
2. Gyproc FireStrip (continuous line)
3. Gypframe Deep Flange Floor & Ceiling Channels (DC)
4. Gypframe 'C' Stud
5. Gyproc Sealant
6. Gyproc CoreBoard
7. Fire-stopping (by others)
8. Glasroc F firecase
9. Gypsum 99 FC 50 Fixing Channel
10. Gypsum GFS1 Fixing Strap fixed to studs with Gyproc Wafer Head Drywall Screws
11. Isover insulation
12. External facade
13. External wall frame stud / by other(s)
14. Cavity barrier (subject to regulatory requirements)

NB: No fixings should be made through the boards into the flanges of the head channel. The arrow (pink) denotes the position of the uppermost board fixing, which should be made into Gypsum GFS1 Fixing Strap. Continuous Gyproc FireStrip must be installed as shown to maintain fire performance.

1. To minimise acoustic downgrade, install Isover insulation within the hollow rib void.
Standard GypWall construction details (continued)
To be read in conjunction with system specific details. Refer to relevant system sections

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Gypframe Floor & Ceiling Channel
4. Gypframe Floor & Ceiling Channel cut and bent to form door head
5. Timber door frame and architrave
6. Gypframe ‘C’ Stud to maintain stud module
7. Timber sub-frame

Door frame (maximum 1200mm width) to satisfy BS 5234: Parts 1 & 2: 1992 - Light and Medium Duty (up to 35kg door)

Advice should be sought from the door manufacturer prior to the construction of these details.
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections

Door frame (maximum 1200mm width) to satisfy BS 5234: Parts 1 & 2: 1992 - Heavy and Severe Duty (60kg door)

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Gypframe Floor & Ceiling Channel to sleeve studs
4. Gypframe Floor & Ceiling Channel cut and bent to form door head
5. Timber door frame and architrave
6. Gypframe ‘C’ Stud to maintain stud module
7. Gypframe Floor & Ceiling Channel cut and bent to extend up studs

Advice should be sought from the door manufacturer prior to the construction of these details.

At the base, the channel is cut and bent to extend 300mm up the studs and fixed each side with two Gyproc Wafer Head Drywall Screws. The studs each side of the opening are sleeved full height of opening with Gypframe Floor & Ceiling Channel.
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Gypframe Floor & Ceiling Channel to sleeve studs
4. Gypframe Floor & Ceiling Channel cut and bent to form door head
5. Timber door frame and architrave
6. Gypframe ‘C’ Stud to maintain stud module
7. Gypframe ‘C’ Studs fixed back to back with Gyproc Drywall Screws at 300mm centres staggered
8. Plasterboard infill (same type as lining) cut to fit between studs
9. Gypframe Floor & Ceiling Channel cut and bent to extend up studs

Advice should be sought from the door manufacturer prior to the construction of these details.

At the base, the channel is cut and bent to extend 300mm up the studs and fixed each side with two Gyproc Wafer Head Drywall Screws. The studs each side of the opening are sleeved full height of opening with Gypframe Floor & Ceiling Channel.

The principle of this alternative detail is only suitable for GypWall, GypWall Robust and GypWall Extreme for fixed head situations only.

Alternative door frame for fixed partition heads only (maximum 1200mm width) to satisfy BS 5234: Parts 1 & 2: 1992 - Heavy and Severe Duty (60kg door)
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections

1. Gypframe ‘C’ Stud
2. Stud sleeved to full opening height with Gypframe Floor & Ceiling Channel
3. Gypframe studs (appropriate to system)
4. Gypframe Extra Deep Flange Floor & Ceiling Channel
5. Gypframe stud insert
6. Centre stud required for margin up to 600mm between openings
7. Partition between openings, minimum 600mm for Gypframe ‘C’ Studs (minimum 300mm for Gypframe ‘I’ Studs)
8. Maximum distance 2400mm (if exceeds 2400mm contact Gyproc Technical Department)

Openings 1201 - 3300mm wide, for example double doors or large windows
Standard GypWall construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections

1. Gyproc plasterboard or Glasroc F specialist board
2. Gypframe ‘C’ Stud
3. Gypframe Floor & Ceiling Channel
4. Penetration seal if required (refer to damper manufacturer for details)

5. Damper (by others). Weight of damper should not exceed 57kg.
 Size of damper should not exceed 1400 x 1200mm
6. Gypframe Folded Edge Standard Floor & Ceiling Channel cut and bent to form opening head and cill
Standard **GypWall** construction details (continued)

To be read in conjunction with system specific details. Refer to relevant system sections.

Board layout - typical configuration

Horizontal board joint - double layer

Horizontal board joint - single layer

1. Inner layer of Gyproc plasterboard or Glasroc F specialist board
2. Outer layer of Gyproc plasterboard or Glasroc F specialist board
3. Gypsum GFS1 Fixing Strap
4. Gypsum metal framing
5. Gyproc Drywall Screws
6. Gyproc plasterboard or Glasroc F specialist board
7. Gypsum ‘C’ Stud
8. Gypsum GFT2 Fixing T (alternatively use Gypsum GSF1 Fixing Strap)